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Abstract. Usual prescriptions for the supersymmetric Wentzel–Kramers–Brillouin (SWKB)
formulation are applicable either in the case of broken or unbroken supersymmetry. However, they
fail for one-dimensional potentials where there is a mixture of broken and unbroken supersymmetry,
which corresponds to an oscillating superpotential. Such a situation arises when two or more
identical wells interact by tunnelling through a potential barrier, exhibiting quasi-degeneracy. The
simplest examples of twofold quasi-degeneracy are the double oscillator well and the double finite
square well which are also very important from the point of view of application in real physics
problems. The quasi-degenerate states are associated with six supersymmetric turning points in
contrast with four classical turning points. This disagreement in the number of classical and
supersymmetric turning points is responsible for the failure of the usual SWKB formulation and
makes the case more interesting. Here we propose a modified version of the SWKB formulation
using the partner potential to calculate the quasi-degenerate states. We apply our reformulated
SWKB prescription to the double finite square well, which gives an excellent result.

The key ingredient of supersymmetric quantum mechanics (SSQM) is to build a partner
potentialV2(x), corresponding to a givenV1(x), which has the same eigen spectrum as
V1(x), except the absence of the ground state ofV1(x). It gives a better understanding of the
analytical solvability of some well known potentials [1,2]. Later, Comtetet al [3] applied this
technique to the Wentzel–Kramers–Brillouin (WKB) approximation method and developed a
supersymmetric WKB (SWKB) quantization condition, and also showed that the lowest-order
SWKB quantization gives the exact spectrum for all shape-invariant potentials (SIPs) [4]. For
such potentials, all higher-order contributions vanish identically [5]. Although the lowest-
order SWKB is not exact for the excited states of non-SIPs [6], it is much better than the
standard WKB approximation. Recently the concept of supersymmetry has been applied in
coupled systems [7].

In all these works, the SWKB formalism was applied either to the case of a broken or an
unbroken supersymmetry. In the case of an unbroken supersymmetry the SWKB turning points
(x1, x2) are determined by−W(x1) = W(x2) =

√
E, i.e., the superpotential has opposite signs

at the two turning points. However, in the case of a broken supersymmetry, the superpotential
has the same sign at the two turning points and is determined byW(x1) = W(x2) = ±

√
E.

In this paper, we address the question of the formulation of an SWKB quantization condition
in the case where there is a mixture of broken and unbroken supersymmetry. This mixing
appears for a quasi-degenerate spectrum, for which two or more identical wells interact by
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Figure 1. Plot of oscillating superpotentialW(x) for the double finite square well witha = 6 fm
andb = 4 fm.

tunnelling through one or more inter-well barriers. As we will see later, this corresponds
to an oscillating superpotential causing a mixture of unbroken and broken supersymmetry
for the SWKB turning points. An important example is the double oscillator (which has
extensive applications in many branches of physics, e.g. vibration of the ammonia molecule)
or double finite square well (which can be extended to multiple finite square wells for producing
band structure in solid state physics), where twofold degeneracy appears due to an interaction
between two identical wells separated by a central barrier.

In the cases of SIPs and also for non-SIPs, having only two classical turning points(a1, a2),
given byV (a1) = V (a2) = E, quasi-degeneracy does not appear andW(x) is a monotonically
varying odd function ofx. In such cases, there are only two SWKB turning points(x1, x2),
given by−W(x1) = W(x2) =

√
E, and supersymmetry is unbroken. Then the transition from

the WKB quantization condition to the SWKB quantization condition is straightforward and

one replaces
∫ a2

a1

√
2m
h̄2 (E − V (x)) dx of the WKB method by

∫ x2

x1

√
2m
h̄2 (E −W 2(x)) dx+ π

2 for

the SWKB approximation [4,9]. It is interesting to note that for all these cases the number of
supersymmetric turning points is the same as the number of classical turning points. However,
in the case of the double oscillator [8] or double finite square well, the potentialV (x) has four
classical turning points. The superpotentialW(x) is not a monotonically varying function,
but shows a typical one-cycle oscillation and has six supersymmetric turning points for the
low-lying quasi-degenerate pairs of states (see figure 1, which is a plot ofW(x) for the
double finite square well). Oscillation of the superpotential is a necessary consequence of
the quasi-degeneracy. For a two-fold quasi-degeneracy in one dimension, the ground state
wave function(ψ0(x)) must have two peaks (but no nodes) corresponding to large and equal
position probability densities in two locations, and hence three extrema inψ0(x). Then the
superpotential,W(x) = − h̄√

2m

ψ ′0(x)
ψ0(x)

, will have three zeros, exhibiting one complete oscillation.

In this case, the number of SWKB turning points (given, in general, byW 2(xi) = E for theith
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Figure 2. Plot of the calculated partner potentialV1(x) (reproducingV (x) in a shifted energy
scale), showing four classical turning points.

SWKB turning point) is six. The number of classical turning points, on the other hand, will be
four. The numbers of supersymmetric and classical turning points only match when there is
no quasi-degeneracy; for this caseψ0(x) has only one maximum andW(x) is a monotonically
varying odd function having only one zero.

Thus, a mismatch in the number of classical and SWKB turning points is an inherent
property of the quasi-degeneracy in one dimension and the associated oscillation inW(x). In
such a situation, we can formulate a WKB quantization condition for four classical turning
points by the usual prescription found in text books of quantum mechanics [10], but cannot
correlate six supersymmetric turning points with four classical turning points. Hence the usual
SWKB procedure fails. We seek an alternative formulation.

As an example, we choose a double finite square well

V (x) =
{
−V0 for −( a2 + b) 6 x 6 − a

2 and a
2 6 x 6 (

a
2 + b)

0 otherwise

}
(1)

Hereb is the width of each square well of depthV0, which are separated by a distancea. The
choice of this potential over the double oscillator well has the advantage thatW(x) is given by
an analytic expression for the former only. On the other hand, both have the same qualitative
features, namely, quasi-degeneracy and an oscillatory superpotential. Both are non-SIPs. In
figure 1 we plot the superpotentialW(x) for the double finite square well. The calculated
partner potentialsV1(x) andV2(x) (in the energy scale, shifted by the ground state energy of
V (x)) are shown in figure 2 and 3, respectively. Note thatV2(x) also has finite discontinuities
of magnitudeV0 at x = ± a

2 andx = ±( a2 + b). BothV1(x) andV2(x) have been calculated
using the superpotentialW(x) given by equation (16) (see later). The potentialV1(x) presents
four classical turning points(a1, a2, a3, a4) and the WKB quantization condition for the case
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Figure 3. Plot of the calculated partner potentialV2(x) showing six classical turning points.

is [11](
sin
∫ a2

a1

k(x) dx

)(
exp−

∫ a3

a2

K(x) dx

)(
sin
∫ a4

a3

k(x) dx

)
−4

(
cos

∫ a2

a1

k(x) dx

)(
exp

∫ a3

a2

K(x) dx

)(
cos

∫ a4

a3

k(x) dx

)
= 0 (2)

where

k(x) =
√

2m

h̄2 (E − V1(x)) (E > V1(x)) (3)

and

K(x) =
√

2m

h̄2 (V1(x)− E) (E < V1(x)). (4)

Since alongx there are some regions which are accessible (E > V (x)) using the WKB
formulation but inaccessible(E < W 2(x)) using the SWKB formulation (figure 4) and vice
versa, we cannot follow the process of transition from WKB to SWKB, and also cannot correlate
between the four classical and six supersymmetric turning points.

How can we solve the riddle and formulate the SWKB prescription whenW(x) has an
oscillation? Again, we use SSQM to find the solution. SSQM asserts that knowing the
superpotentialW(x) in terms of the ground state wave functionψ0(x), one can form two
partner potentials:

V1(x) = W 2(x)− h̄√
2m
W ′(x) (5)

and

V2(x) = W 2(x) +
h̄√
2m
W ′(x). (6)
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Figure 4. Plot ofW 2(x) showing that all quasi-degenerate states have six SWKB turning points.

ThenV1(x) andV2(x) have the same eigenspectra except that the ground state ofV1(x) is
absent in the spectrum ofV2(x). HereV1(x) is our starting potential (in the shifted energy
scale), having four classical turning points. A plot ofV2(x) againstx (figure 3) shows that
it has six classical turning points. Since the number of classical turning points forV2(x)

and supersymmetric turning points ofW(x) match, we can make a transition from the WKB
procedure forV2(x) to the SWKB quantization condition by the standard procedure and will
be able to calculate all the energy levels ofV1(x) by the supersymmetric level degeneracy
relation

E
(1)
n+1 = E(2)n (n = 0, 1, 2, . . .) (7)

whereE(i)n is the energy of thenth state ofVi(x) (i = 1, 2), in an energy scale which is shifted
by the ground state energy ofV (x), such thatE(1)0 = 0. We will see later that the ground state
energy ofV1(x) is correctly reproduced by the reformulated SWKB procedure.

The WKB quantization condition for six turning points (a1, a2, a3, a4, a5, a6) can be
obtained by the standard WKB procedure connecting across the six turning points and has the
following form:

1
2

(
sin
∫ a2

a1

k(x) dx

)(
exp−

∫ a3

a2

K(x) dx

)(
cos

∫ a4

a3

k(x) dx

)
×
(

exp−
∫ a5

a4

K(x) dx

)(
sin
∫ a6

a5

k(x) dx

)
+2

(
sin
∫ a2

a1

k(x) dx

)(
exp−

∫ a3

a2

K(x) dx

)(
sin
∫ a4

a3

k(x) dx

)
×
(

exp
∫ a5

a4

K(x) dx

)(
cos

∫ a6

a5

k(x) dx

)
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+2

(
cos

∫ a2

a1

k(x) dx

)(
exp

∫ a3

a2

K(x) dx

)(
sin
∫ a4

a3

k(x) dx

)
×
(

exp−
∫ a5

a4

K(x) dx

)(
sin
∫ a6

a5

k(x) dx

)
−8

(
cos

∫ a2

a1

k(x) dx

)(
exp

∫ a3

a2

K(x) dx

)(
cos

∫ a4

a3

k(x) dx

)
×
(

exp
∫ a5

a4

K(x) dx

)(
cos

∫ a6

a5

k(x) dx

)
= 0 (8)

wherek(x) andK(x) have the same meaning as before (cf equations (3) and (4)). From
equation (8) one notices that the WKB quantization condition involves both classically
accessible and inaccessible regions. For the accessible regionsai < x < ai+1 (with
i = 1, 3, 5), the SWKB turning points are given by−W(xi) = W(xi+1) =

√
ESWKB (unbroken

supersymmetry), whereESWKB is the SWKB energy. Then we have [12]∫ ai+1

ai

√
2m

h̄2 (E
(2)
n − V2(x)) dx =

∫ ai+1

ai

√
2m

h̄2 (E
(2)
n −W 2(x)− h̄√

2m
W ′) dx

=
∫ xi+1

xi

√
2m

h̄2 (E
2
n −W 2(x)) dx − π

2
(i = 1, 3, 5) (9)

For inaccessible regionsai < x < ai+1 (with i = 2, 4), supersymmetry is broken and
W(xi) = W(xi+1) = ±

√
ESWKB, and we have [12]∫ ai+1

ai

√
2m

h̄2 (V2(x)− E(2)n ) dx =
∫ xi+1

xi

√
2m

h̄2 (W
2(x)− E(2)n ) dx (i = 2, 4) (10)

The contribution ofW ′(x) in the above equation vanishes identically [12]. Substituting
these equations into the WKB quantization condition (equation (8)), the SWKB quantization
condition for potentials showing six SWKB turning points (x1, x2, x3, x4, x5, x6) becomes

1
2

(
cos

∫ x2

x1

γ dx

)(
exp−

∫ x3

x2

δ dx

)(
sin
∫ x4

x3

γ dx

)
×
(

exp−
∫ x5

x4

δ dx

)(
cos

∫ x6

x5

γ dx

)
+2

(
cos

∫ x2

x1

γ dx

)(
exp−

∫ x3

x2

δ dx

)(
cos

∫ x4

x3

γ dx

)
×
(

exp
∫ x5

x4

δ dx

)(
sin
∫ x6

x5

γ dx

)
+2

(
sin
∫ x2

x1

γ dx

)(
exp

∫ x3

x2

δ dx

)(
cos

∫ x4

x3

γ dx

)
×
(

exp−
∫ x5

x4

δ dx

)(
cos

∫ x6

x5

γ dx

)
−8

(
sin
∫ x2

x1

γ dx

)(
exp

∫ x3

x2

δ dx

)(
sin
∫ x4

x3

γ dx

)
×
(

exp
∫ x5

x4

δ dx

)(
sin
∫ x6

x5

γ dx

)
= 0 (11)

where

γ =
√

2m

h̄2 (E
SWKB−W 2) δ =

√
2m

h̄2 (W
2 − ESWKB) (12)



Reformulation of SWKB quantization condition 811

Note that
∫ xi+1

xi
α dx = 0, for i = 1, 3, 5, satisfy equation (11) identically—this is possible

whenxi andxi+1 (i = 1, 3, 5) coalesce, corresponding toESWKB
0 = 0, whereESWKB

n is the
SWKB energy for thenth state ofV1(x) (see figure 4). Thus the ground state ofV1(x) is again
reproduced exactly, even for the oscillatory superpotential. The double finite square well is an
exceptional case, where all the bound states are quasi-degenerate and have six turning points,
whereas for the double oscillator only the low-lying states are quasi-degenerate.

Exact solutions of the double finite square well can be obtained by standard quantum
mechanics. The energy eigenvalues are obtained from the transcendental equations√

B

V0 − B tanh

(
a

2

√
2mB

h̄2

)

= tan

{
b

√
2m

h̄2 (V0 − B)− tan−1

(√
B

V0 − B

)}
(for even parity) (13)

and√
B

V0 − B coth

(
a

2

√
2mB

h̄2

)

= tan

{
b

√
2m

h̄2 (V0 − B)− tan−1

(√
B

V0 − B

)}
(for odd parity) (14)

where

α =
√

2mB

h̄2 β =
√

2m

h̄2 (V0 − B) (15)

andB = −E is the binding energy. The superpotential is obtained from the ground state wave
function (even parity) and is given by

W(x) =


− h̄√

2m
α0 tanh(α0x) 06 x 6 a

2

− h̄√
2m
β0 tan{β0(d − x)− tan−1( α0

β0
)} a

2 6 x 6 d
h̄√
2m
α0 d 6 x

 (16)

whered = a
2 + b and

α0 =
√

2mB0

h̄2 β0 =
√

2m

h̄2 (V0 − B0) (17)

whereB0 denotes the ground state binding energy, which is the lowest solution forB of
equations (13) and (15). We solve the SWKB quantization condition given by equations (11)
and (12) for energy(ESWKB, n), whereW(x) is given by equation (16).

We compare the SWKB energy with the exact energy solution of equations (15) and
either (13) or (14). For a further comparison with the WKB approximation, we use the
WKB quantization condition forV (x), which has only four classical turning points and hence
solve equation (2) with equations (3) and (4) numerically. For the numerical solution, we
use a preliminary bisection method followed by a Newton–Raphson method [13], to reach a
precision of up to 9 significant digits—the units are chosen suitably according to convenience.
In table 1, we present the exact, WKB and SWKB results for three representative values of
a (the width of the barrier between the wells)= 5, 6, 7 (fm) and for a fixed value ofb (the
width of each well)= 4 (fm). The depth of the potential (V0) is chosen as 50 Mev for each
case and the unit is chosenh̄

2

2m = 20 Mev fm2. All the energy values in table 1 are given in the
original (unshifted) scale. Asa increases, the degeneracy effect becomes more pronounced
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Table 1. Comparision of exact, WKB and SWKB energies (MeV) for the double finite square well
(V0 = 50 Mev,b = 4 fm).

a n Exact energy WKB energy SWKB energy

5 0 −42.774 9435 −46.803 5145 −42.774 9435
1 −42.770 0854 −46.801 2895 −42.590 7551
2 −22.498 0129 −21.260 2471 −21.805 7056
3 −22.409 6970 −21.182 6106 −21.641 7171

6 1 −42.773 0918 −46.802 6504 −42.773 0918
2 −42.771 9365 −46.802 1551 −42.609 7884
3 −22.469 6684 −21.235 7057 −21.727 8001
4 −22.438 4736 −21.207 4769 −21.668 0305

7 0 −42.772 6515 −46.802 4574 −42.772 6515
1 −42.772 3767 −46.802 3473 −42.628 7700
2 −22.459 6124 −21.226 7489 −21.698 7191
3 −22.448 5934 −21.216 4847 −21.677 0231

(especially for the lowest-lying states), since the two wells are then separated by a larger
distance and the interference effect is weak. Since the double finite square well is a non-SIP,
we cannot expect that the SWKB quantization condition given by equations (11) and (12) will
produce exact results as in the case of SIPs with monotonically varyingW(x). In the SWKB
quantization condition, equation (11), we have kept only the term of order ¯h, which is again
an approximation. Unlike the case of SIPs, the contribution of terms of higher order in ¯h will
not vanish identically. Here only the ground state is exactly reproduced. From table 1, we
see that the first-order SWKB results are much better than the first-order WKB results and the
quasi-degeneracy is fairly well reproduced.
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