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Abstract. Usual prescriptions for the supersymmetric Wentzel-Kramers—Brillouin (SWKB)
formulation are applicable either in the case of broken or unbroken supersymmetry. However, they
fail for one-dimensional potentials where there is a mixture of broken and unbroken supersymmetry,
which corresponds to an oscillating superpotential. Such a situation arises when two or more
identical wells interact by tunnelling through a potential barrier, exhibiting quasi-degeneracy. The
simplest examples of twofold quasi-degeneracy are the double oscillator well and the double finite
square well which are also very important from the point of view of application in real physics
problems. The quasi-degenerate states are associated with six supersymmetric turning points in
contrast with four classical turning points. This disagreement in the number of classical and
supersymmetric turning points is responsible for the failure of the usual SWKB formulation and
makes the case more interesting. Here we propose a modified version of the SWKB formulation
using the partner potential to calculate the quasi-degenerate states. We apply our reformulated
SWKB prescription to the double finite square well, which gives an excellent result.

The key ingredient of supersymmetric quantum mechanics (SSQM) is to build a partner
potential V,(x), corresponding to a givei;(x), which has the same eigen spectrum as
Vi(x), except the absence of the ground stat&@k). It gives a better understanding of the
analytical solvability of some well known potentials [1,2]. Later, Coretetl [3] applied this
technique to the Wentzel-Kramers—Brillouin (WKB) approximation method and developed a
supersymmetric WKB (SWKB) quantization condition, and also showed that the lowest-order
SWKB quantization gives the exact spectrum for all shape-invariant potentials (SIPs) [4]. For
such potentials, all higher-order contributions vanish identically [5]. Although the lowest-
order SWKB is not exact for the excited states of non-SIPs [6], it is much better than the
standard WKB approximation. Recently the concept of supersymmetry has been applied in
coupled systems [7].

In all these works, the SWKB formalism was applied either to the case of a broken or an
unbroken supersymmetry. Inthe case of an unbroken supersymmetry the SWKB turning points
(x1, xo) are determined by W (x1) = W (x2) = VE, i.e., the superpotential has opposite signs
at the two turning points. However, in the case of a broken supersymmetry, the superpotential
has the same sign at the two turning points and is determindtd ay) = W (x») = +VE.

In this paper, we address the question of the formulation of an SWKB quantization condition
in the case where there is a mixture of broken and unbroken supersymmetry. This mixing
appears for a quasi-degenerate spectrum, for which two or more identical wells interact by
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Figure 1. Plot of oscillating superpotentia¥ (x) for the double finite square well with = 6 fm
andb = 4 fm.

tunnelling through one or more inter-well barriers. As we will see later, this corresponds
to an oscillating superpotential causing a mixture of unbroken and broken supersymmetry
for the SWKB turning points. An important example is the double oscillator (which has
extensive applications in many branches of physics, e.g. vibration of the ammonia molecule)
or double finite square well (which can be extended to multiple finite square wells for producing
band structure in solid state physics), where twofold degeneracy appears due to an interaction
between two identical wells separated by a central barrier.

Inthe cases of SIPs and also for non-SIPs, having only two classical turning @aints),
givenbyV (a1) = V(az) = E, quasi-degeneracy does not appearidiid) is a monotonically
varying odd function ofc. In such cases, there are only two SWKB turning points x»),
given by—W (x1) = W(x2) = +E, and supersymmetry is unbroken. Then the transition from
the WKB quantization condition to the SWKB quantization condition is straightforward and

one replaceg” /2 (E — V (x)) dx of the WKB method by/;* /22 (E — W2(x)) dx + 3 for
the SWKB approximation [4, 9]. Itis interesting to note that for all these cases the number of
supersymmetric turning points is the same as the number of classical turning points. However,
in the case of the double oscillator [8] or double finite square well, the poténtiglhas four
classical turning points. The superpotentié(x) is not a monotonically varying function,

but shows a typical one-cycle oscillation and has six supersymmetric turning points for the
low-lying quasi-degenerate pairs of states (see figure 1, which is a plét(e§ for the

double finite square well). Oscillation of the superpotential is a necessary consequence of
the quasi-degeneracy. For a two-fold quasi-degeneracy in one dimension, the ground state
wave function(y(x)) must have two peaks (but no nodes) corresponding to large and equal
position probability densities in two locations, and hence three extrenga(ir). Then the

superpotentialyV (x) = — Jme mz; , Will have three zeros, exhibiting one complete oscillation.

In this case, the number of SWKB turning points (given, in general/By;) = E for theith
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Figure 2. Plot of the calculated partner potentiél(x) (reproducingV (x) in a shifted energy
scale), showing four classical turning points.

SWKB turning point) is six. The number of classical turning points, on the other hand, will be
four. The numbers of supersymmetric and classical turning points only match when there is
no quasi-degeneracy; for this cagg(x) has only one maximum andf (x) is a monotonically
varying odd function having only one zero.

Thus, a mismatch in the number of classical and SWKB turning points is an inherent
property of the quasi-degeneracy in one dimension and the associated oscillaiign)inin
such a situation, we can formulate a WKB quantization condition for four classical turning
points by the usual prescription found in text books of quantum mechanics [10], but cannot
correlate six supersymmetric turning points with four classical turning points. Hence the usual
SWKB procedure fails. We seek an alternative formulation.

As an example, we choose a double finite square well

V(x) = 1)

Vo for —(§+b) <x <-4 and 8 <x<(§+Db)
0 otherwise

Hereb is the width of each square well of depith, which are separated by a distamaceThe

choice of this potential over the double oscillator well has the advantag@thatis given by

an analytic expression for the former only. On the other hand, both have the same qualitative
features, namely, quasi-degeneracy and an oscillatory superpotential. Both are non-SIPs. In
figure 1 we plot the superpotenti@if (x) for the double finite square well. The calculated
partner potential®;(x) andV,(x) (in the energy scale, shifted by the ground state energy of
V(x)) are shown in figure 2 and 3, respectively. Note thdt:) also has finite discontinuities

of magnitudelp atx = £5 andx = +(5 +b). Both V1(x) and V,(x) have been calculated

using the superpotentidf (x) given by equation (16) (see later). The potentiglx) presents

four classical turning point&s, az, as, a4) and the WKB quantization condition for the case
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Figure 3. Plot of the calculated partner potentigl(x) showing six classical turning points.

is [11]

(sin/d2 k(x) dx) <exp— /03 K(x) dx) (sin/a4 k(x) dx)
_4< cos:/a2 k(x) dx) ( exp/a3 K(x) dx) ( cos/a4 k(x) dx) =0 (2)

2m

k(x) =/ ﬁ(E — Vi(x) (E > V1(x)) ®3)
2m

K(x) =, ﬁ(vl(x) —E) (E < V1(x)). “4)

Since alongx there are some regions which are accessiblex{ V(x)) using the WKB
formulation but inaccessibleE < W?(x)) using the SWKB formulation (figure 4) and vice
versa, we cannot follow the process of transition from WKB to SWKB, and also cannot correlate
between the four classical and six supersymmetric turning points.

How can we solve the riddle and formulate the SWKB prescription wiigrn) has an
oscillation? Again, we use SSQM to find the solution. SSQM asserts that knowing the
superpotentiaW (x) in terms of the ground state wave functigg(x), one can form two
partner potentials:

where

and

h
Vi(x) = W3(x) — Ewm (5)

and
h

m

Va(x) = W3(x) +

W’ (x). (6)
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Figure 4. Plot of W2(x) showing that all quasi-degenerate states have six SWKB turning points.

Then Vi(x) and V,(x) have the same eigenspectra except that the ground statg0fis
absent in the spectrum &% (x). HereVi(x) is our starting potential (in the shifted energy
scale), having four classical turning points. A plotiéf(x) againstx (figure 3) shows that
it has six classical turning points. Since the number of classical turning pointg,{oy
and supersymmetric turning points Bf(x) match, we can make a transition from the WKB
procedure folV,(x) to the SWKB quantization condition by the standard procedure and will
be able to calculate all the energy levelslaix) by the supersymmetric level degeneracy
relation

EY =E® n=0,12..) @)

n

whereE (" is the energy of theth state ofV; (x) (i = 1, 2), in an energy scale which is shifted
by the ground state energy &f(x), such thatEél) = 0. We will see later that the ground state
energy ofVy(x) is correctly reproduced by the reformulated SWKB procedure.

The WKB quantization condition for six turning points,( az, as, as, as, ag) can be
obtained by the standard WKB procedure connecting across the six turning points and has the

following form:

%(sin/az k(x) dx) (exp— /a3 K (x) dx> <cos/a4 k(x) dx>
X (exp— /as K(x) dx) <sin/d6 k(x) dx)
+2<sin/a2 k(x) dx) ( exp— ” K(x) dx) (sin/a4 k(x) dx)
X (exp/a5 K(x) dx) (cos/a6 k(x) dx)
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+2< cos/a2 k(x) dx) (exp ” K(x) dx) (sin/a4 k(x) dx)

X (exp— /a5 K(x) dx) <sin/a6 k(x) dx)

—8((:03/02 k(x) dx) ( exp " K(x) dx) ( cos/g4 k(x) dx)

X (exp/u5 K(x) dx) (cos/a6 k(x) dx) =0 (8)

wherek(x) and K (x) have the same meaning as before (cf equations (3) and (4)). From
equation (8) one notices that the WKB quantization condition involves both classically
accessible and inaccessible regions. For the accessible ragiors x < a;+1 (with

i =1, 3,5),the SWKB turning points are given byW (x;) = W (x;+1) = + ESWKB (unbroken
supersymmetry), wherBSWKB is the SWKB energy. Then we have [12]

f/ (E? — Va(x)) dx = f \/ (E@ - Wzm—\/%wqu

= / \/hq(E,f — W2(x)) dx — % (i =135 9)

For inaccessible regiong < x < a;+1 (with i = 2, 4), supersymmetry is broken and
W(x;) = W(xi+1) = £v ESWKB and we have [12]

/ \/ 2 (Vax) — Py dx = f\/ W2(@) — E)dx - (1=2.4) (10)

The contribution of W/(x) in the above equation vanishes identically [12]. Substituting
these equations into the WKB quantization condition (equation (8)), the SWKB quantization
condition for potentials showing six SWKB turning poinig (x2, x3, x4, x5, x6) becomes

%(cos/xzydx><exp /X36dx><sin/x:4ydx)
x(exp 8dx><cos/x:6ydx)
(e[ ya) (e [ ens [ )
x(exp 8dx)(sm ydx)
+2<s|n/ ydx)(exp 8dx>(cos/ ydx)
(o0 /adx)(cos o)
oonf (o] s4) o
(o[ s6e)(sn [ var) =0 "

2
y = \/_(ESWKB w2) s = E_’?(Wz — ESWKB) (12)

+

where
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Note thatfxf"*la dx = 0, fori = 1, 3,5, satisfy equation (11) identically—this is possible
whenx; andx;.+1 (i = 1,3, 5) coalesce, corresponding B3VXB = 0, where ESWKE is the
SWKB energy for thexth state ofV;(x) (see figure 4). Thus the ground staté/®fx) is again
reproduced exactly, even for the oscillatory superpotential. The double finite square well is an
exceptional case, where all the bound states are quasi-degenerate and have six turning points,
whereas for the double oscillator only the low-lying states are quasi-degenerate.

Exact solutions of the double finite square well can be obtained by standard quantum
mechanics. The energy eigenvalues are obtained from the transcendental equations

5 tanh(c—l\/@>
\ Vo—B 2V R?
= tan{b, / %(Vo — B) —tan! ( Voli B) } (for even parity)  (13)
and
B coth (C—l 2m3>
Vo— B 2V n?

_ 2m 1 B .
= tan{b, / ﬁ(vo — B) —tan ( Vo B) } (for odd parity) (24)
2mB m
o=\F  B=mV-B (15)

andB = —E isthe binding energy. The superpotential is obtained from the ground state wave
function (even parity) and is given by

where

N

—J%aotanf(aox) 0<x<3
W(x) = —J%ﬂotan{ﬂo(i —x) —tar (%)} 4 <x<d (16)
\/—an d < X

whered = 5 + b and

2m B, 2
ao=,/% ﬂo=,/ﬁz—m(VO—Bo) (17)

where By denotes the ground state binding energy, which is the lowest solutioB fafr
equations (13) and (15). We solve the SWKB quantization condition given by equations (11)
and (12) for energyEswks, 1), whereW (x) is given by equation (16).

We compare the SWKB energy with the exact energy solution of equations (15) and
either (13) or (14). For a further comparison with the WKB approximation, we use the
WKB quantization condition fo¥ (x), which has only four classical turning points and hence
solve equation (2) with equations (3) and (4) numerically. For the numerical solution, we
use a preliminary bisection method followed by a Newton—Raphson method [13], to reach a
precision of up to 9 significant digits—the units are chosen suitably according to convenience.
In table 1, we present the exact, WKB and SWKB results for three representative values of
a (the width of the barrier between the wells) 5, 6, 7 (fm) and for a fixed value b (the
width of each well)= 4 (fm). The depth of the potential/§) is chosen as 50 Mev for each
case and the unit is chos% = 20 Mev fn. All the energy values in table 1 are given in the
original (unshifted) scale. As increases, the degeneracy effect becomes more pronounced
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Table 1. Comparision of exact, WKB and SWKB energies (MeV) for the double finite square well
(Vo = 50 Mev,b = 4 fm).

a

5

=

Exactenergy WKB energy SWKB energy

—42.7749435 —46.8035145 —42.7749435
—42.7700854 —46.8012895 —42.5907551
—22.4980129 —21.2602471 —21.8057056
—22.4096970 —21.1826106 —21.6417171
—42.7730918 —46.8026504 —42.7730918
—42.7719365 —46.8021551 —42.609 7884
—22.4696684 —21.2357057 —21.7278001
—22.4384736 —21.2074769 —21.668 0305
—42.7726515 —46.8024574 —42.7726515
—42.7723767 —46.8023473 —42.628 7700
—22.4596124 —21.2267489 —21.6987191
—22.4485934 —21.2164847 —21.6770231

WNPFPOPPWNELWNREO

(especially for the lowest-lying states), since the two wells are then separated by a larger
distance and the interference effect is weak. Since the double finite square well is a non-SIP,
we cannot expect that the SWKB quantization condition given by equations (11) and (12) will
produce exact results as in the case of SIPs with monotonically vawing. In the SWKB
guantization condition, equation (11), we have kept only the term of @rdehich is again

an approximation. Unlike the case of SIPs, the contribution of terms of higher ordevilh —

not vanish identically. Here only the ground state is exactly reproduced. From table 1, we
see that the first-order SWKB results are much better than the first-order WKB results and the
quasi-degeneracy is fairly well reproduced.
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